J. Appl. Maths Mechs, Vol. 59, No. 2, pp. 321-324, 1995

Copyright © 1995 Elsevier Science Ltd

@ Pergamon Printed in Great Britain. All rights reserved
0021-8928(95)00037-2 0021-8928/95 $24.00+0.00

AVERAGING OF THE SYSTEM OF EQUATIONS
OF MOTION OF A VISCOUS FLUID IN
A POROUS MEDIUMY}

G. P. PANASENKO
Moscow
(Received 26 May 1993)

A system of equations of motion of a viscous fluid (with a small coefficient of viscosity) in a periodic porous medium is considered.
The ratio of the period of the structure of the medium to the characteristic dimension of the problem is a small parameter. The
pore size and period of the structure are of the same order of magnitude. A formal asymptotic solution is constructed and an
averaged equation, which is an analogue of the Boussinesq equation, is derived.

We will adopt as a model of a porous; system a continuous medium with periodically arranged cavities (see [1], for
example). Let K be the cube {& € R*[0 < & < 1,j =1, 2, 3} and let us place a certain set, consisting of a ﬁmte
number of domains, in K and continue it periodically (with a period of umty) in the whole of the space R>, Let
A be the union of all the resulting sets. We assume that the boundary d4 is a smooth mamfold and the domain
Q=R\Ais connected, and that 4, is the set obtained from A4 by a homothetic contraction &' times (& is a small
parameter), that is, 4, = {x € R’| x/e e A}.

We will adopt as the geometric model of the pore system the domain Q, = R*\A, and consider the system of
equations of motion of a viscous fluid with a small coefficient of viscosity y. in this set

(v A+ (0. V)0)==-Vp+ R Av+ f (x/€,x,1,0)
3p/ At +div(pv)=0, p=0(p), p.veR® (1)
e =€, y<2, p=const, f,(&x.50)=f(Exk>7,v)

x € Qg and ¢t > 0 (p is the density, v is the velocity vector and p is the pressure), (€, x, T, v) and p are independent

of &, the function f is 1-periodic with respect to £ € Q, and Q is a specified smooth function.
The no-slip condition

vlyq, =0 @

is imposed at the boundary of the domain €, and the initial values of the unknown functions

are specified.
The limiting behaviour of the solution of problem (1)—(3) as € — 0 is studied (a formal asymptotic solution is
constructed).

There is an extensive literature ([2-8], for example) on the investigation of various equations defined in domains
of this type. In particular, systems of Stokes and Navier-Stokes equations in porous media have been considered
in [5-8] and averaged models of the Darcy law type [5-8], of the non-linear Darcy law type [8] and also the Brinkman
law type [9] have been obtained. An averaged model of the Boussinesq equation type [10] will be obtained below
for problem (1)—(3).

A formal asymptotic solution is sought in the form of functions of fast and slow variables

v=e2"Y(B(x,7)+ V(x/&,x,1))
p=p(x,T)+eP(x/€,x,1), p=p(x.0)+eR(x/¢,x,T) )

t=r2Y, (V)= [ VEx0d=0
K\A
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where P(§, x, 1), V(E, x, 1), R(E, x, 1) are 1-periodic functions of &.
Substituting (4) into (1) and using the formula for the differentiation of a complex function, we obtain

AV +V, 5+ Ve P- fE 5 0eT T (T+V)+ BE+VIVV +
+e2 V(AT + V)1 31+ RE+ VIV, V + (F+ERIT+ VIV, (B+V))+ (5)

+€5 2RI+ V) 3t +6(V, p- 204 £ V) - €2PA, (T+V) - hT—h(x,7) =0

e divy (BV)+0p/ dt+div, (P(D+V)) +divg (R(T+V)) +€(dR/ It +div, (R(T+V))) (6)
P-Q(P)+eR-(QF+eP)-Q(P)=0 )
3 32
Ag=3 ——
U0

h is a constant 3 x 3 matrix, and / (x, 7) is a vector function, chosen from the condition (V) = 0.

On the boundary 9Q,

v+V=0 (8)
3_';1110 functions p, v, p, k,P,V,R are sought in the form of regular series in the parameters &, = €, & =
€ ,E3=¢

Substitutiné these series into Eqs (5)~(8), we obtain

pX ﬁfﬁtzﬁf (V xPuim + 60uym + Eum + X Efelze'a"(—uAgVum + vgpklm )=0
k,l,m=0 kl,m=0

e T efehe (divy (Fooo Viim) ~ Phin) =0
k.l .m=0

Pooo ~ @(Pooa) + “2 o sfe’,e',"((R,‘,,,,-%g Pitm ~Piim) +

- P p=Fono
(k.l,m)w(0,0,0)

+(Prat,tm *Qi B im)=0
P P=Pooo

Vklu = —Vkim s Eeaﬂ

)

The three subscripts correspond to the number of the coefficient in the regular expansion in powers of €, €,
€3: Olim depends on p,, r Vgsr Dgsns Py with the subscripts ¢, s and r such that g < k, s <[, r < m, where
just one of these mequa.lltles is stnct amfJ Plim also depend on py,,,.

Note that

(Pbtm) =0, (@h+1,1,m) = OPizm / T+ ; (Bium Bo0o + Pooo Okt ) +

+(div , (Pam Y000 ) + iV x (Booo Vatm )} + ¥ i (%, T) (10)

where (%, T) also depend on pg,,, Vg, With the subscripts g, s, and r which satisfy the same inequalities as above,
(k. 1, m)=(0,0,0).
The matrix 4 and the vector Ay, are chosen from the condition

Vim) =0 (11)
The coefficients Py, Oims Piims Pkimo Vicim» Rium are constructed according to the following algorithm. Let W(E)

be a 3 x 3 matrix function and let F(E) be a three-element row matrix, 1-periodic with respect to &, and a solution
of the problem

—uA§W+V§F=E. diV§w=0, éEQ (12)

W=0;, Ee€dQ
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E is the unit 3 x 3 matrix. Let us put
Vitm = W(hOim + g ) + Viam — Stim (13)

where h and Ay, are chosen from the condition that (Vi) = 0, that is, (Viim,» Pum> Rum) is @ solution of the
problem

~MAE Vit + Ve Pitm = i §€Q (14)

divg (PoooVeim) = Piim+ EEQ (15)

Bin=2  Bun+Olm Een (16)
P 1p=Fono

Vum =0, E€dQ an

h=(W)™, A =~(W) (V) (18)

Actually, it follows from (13) and (18) that
(W(ED g + Pt )+ Vim — Okt ) = 0
The condition for problem (14), (15), (17) to be solvable {2, p. 167] is
(Phs1im) =0
and relations (9)-(11) yield the equations for P, Piims Viim
FOyp + g +V Byt =0 (19)
OPim / 9T +diV ; (Pram V000 + Po00 Okim ) + Wim (%, T) =0
Piim =%§ p=pos P+ k:lsm)#(0,0,0)
(W)™ Booo + Voo (W)™ (Voo = 0 (20)
oo / 31+ div,, (BoogBoo0) =0, oo = 2Booo)

with the homogeneous initial conditions ¢ = 0: py, = 0, Vg, = 0.
System (20) is an averaged system of zeroth-order equations. Substituting vy from the first equation and pgg
from the third equation into the second equation, we obtain

9Q(Pooo )/ 3t ~ div  (Q(Fooo XX W)(VPooo — (W)™ (Voo ))) = 0 1)
where Vy is the solution of the problem

~HAEVooo + Ve Pooo = f(§,%,7,0), §eQ

_ Equations (14)-(20) have to be solved in the following order: problem (14), (15), (17) is first solved for the pair
Viams Pum for each fixed set of k, [, m (when (k, I, m) = (0, 0, 0), it is problem (22)). We next determine hy,, from
(18) and then solve problems (19), (20) and, finally, Ry, is determined from (16).

We note that the averaged model (21), (22) is an analogue of the Boussinesq model: it becomes the Boussinesq
model [10] in the case of a linear dependence of Q(p). If f(E, x, 1, v) = 0 when t € [0, T}, To > 0, it can be shown
by induction that ¥, = 0 when 1 € (0, 7o) so that v + V are asymptotically equal to zero when ¢ = 0. Conditions
(1)—(3) are exactly satisfied asymptotically.

By analogy with problem (1) in the domain 2, problem (1)-(3) may be treated in the domain G, X R,
where G, = (¥’ e R, x'fe € G,}, the domain G, is bounded in R? with a piecewise-smooth boundary, x’=(x;, x,), the
function f; is solely dependent on x'/e, x5, £, v and its first two components f,4, f;; are zero.

This model simulates the motion of a viscous fluid in a channel of complex form. In constructing the asymptotic
form we use (4) with x/e replaced by x'/e, x replaced by x; and v = (0, 0, v3)*. The analogue of the operator for
the mean ( - ) is the integral | G, 08, £'=(&y, &) (the third component of the vectors (V) is equal to zero).



324 G. P. Panasenko

The procedure which has been described above as applied to problem (1)(3), in the first approximation yields

- Nt .y -
aQ(Pom)_i_(Q(iom)(w)( P00o -(W)_l(VOOO>)=0’ P(no|,=0 =0
at 8x3 ax'.’t

in the domain G, x R, where Pf’(&’) is the solution of Poisson’s equation

—Mg'w=l, g'EGl; WLGl:O

and 17000@') is the solution of Poisson’s equation

Ay Voo = A&, x3,7.0), E'€G, V"‘”Iac, =0

Hence the homogenization procedure in the zeroth approximation yields an analogue of the Boussinesq equation

in the case of an unsteady-state system of equations of motion for a viscous fluid with a small coefficient of viscosity.

This research was carried out with the financial support of the Russian Foundation for Basic Research
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